SAR Image Despeckling Algorithms using Stochastic Distances and Nonlocal Means
ثبت نشده
چکیده
This paper presents two approaches for filter design based on stochastic distances for intensity speckle reduction. A window is defined around each pixel, overlapping samples are compared and only those which pass a goodness-of-fit test are used to compute the filtered value. The tests stem from stochastic divergences within the Information Theory framework. The technique is applied to intensity Synthetic Aperture Radar (SAR) data with homogeneous regions using the Gamma model. The first approach uses a Nagao-Matsuyama-type procedure for setting the overlapping samples, and the second uses the nonlocal method. The proposals are compared with the Improved Sigma filter and with anisotropic diffusion for speckled data (SRAD) using a protocol based on Monte Carlo simulation. Among the criteria used to quantify the quality of filters, we employ the equivalent number of looks, and line and edge preservation. Moreover, we also assessed the filters by the Universal Image Quality Index and by the Pearson correlation between edges. Applications to real images are also discussed. The proposed methods show good results. Keywords-Despeckling; Information Theory; Nonlocal means; SAR data; Stochastic Distances.
منابع مشابه
SAR Image Despeckling Algorithms using Stochastic Distances and Nonlocal Means
This paper presents two approaches for filter design based on stochastic distances for intensity speckle reduction. A window is defined around each pixel, overlapping samples are compared and only those which pass a goodness-of-fit test are used to compute the filtered value. The tests stem from stochastic divergences within the Information Theory framework. The technique is applied to intensit...
متن کاملExtended ratio edge detector for despeckled SAR image evaluation
Synthetic aperture radar (SAR) images due to the usage of coherent imaging systems are affected by speckle. So lots of despeckling filters have been introduced up to now to suppress the speckle. Hence, objective and subjective evaluation of the denoised SAR images becomes a necessity. Thereby lots of objective evaluating estimators are introduced to evaluate the performance of despeckling filte...
متن کاملSar image despeckling based on nonlocal similarity sparse decomposition
This letter presents a method of synthetic aperture radar (SAR) image despeckling aimed to preserve the detail information while suppressing speckle noise. This method combines the nonlocal self-similarity partition and a proposed modified sparse decomposition. The nonlocal partition method groups a series of structure-similarity data sets. Each data set has a good sparsity for learning an over...
متن کاملRecent Advances in Synthetic Aperture Radar Enhancement and Information Extraction
Synthetic Aperture Radar (SAR) systems are all-weather, night and day, imaging systems. Automatic interpretation of information in SAR images is very difficult because SAR images are affected by a noise-like characteristic called speckle that arises from an imaging device and strongly data and makes automatic image interpretation very difficult. The speckle noise in SAR images can be removed us...
متن کاملDespeckling Synthetic Aperture Radar Imagery using the Contourlet Transform
A novel method of Synthetic Aperture Radar (SAR) image despeckling using the contourlet transform representation is presented. Justification for the use of the contourlet signal representation, originally developed for natural images, is given. Methods of evaluating the despeckling performance of various algorithms are provided. Finally, a comparison of performance of multilook processing, wave...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013